LHS® XTS[™] PROPAGATION PREVENTION & THERMAL MANAGEMENT PRODUCT

XTS POUCH

XTS products rely on a proprietary gel and novel containment design to address both thermal runaway and thermal performance concerns in lithium-ion battery (LiB) applications.

Key thermal properties have multiple functions for LiB thermal management:

- Enhanced specific heat capacity and thermal conductivity for tailored cooling behavior during normal pack operations
- Excellent thermal barrier and energy conversion properties through use of a high latent heat PCM which provides both cell-to-cell and ejecta thermal protection
- Custom design approach to achieve optimized thermal performance with reduced weight, which is scalable to a diversity of LiB formats

CUSTOMIZED XTS POUCH

CUSTOMIZED FOR:

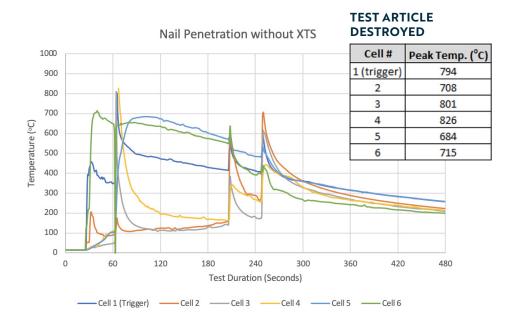
Cell Spacing

- Cell holder designs
- Connectors/BMS
- configurations

CONFORMABLE XTS POUCH

GEOMETRY APPLIED BASED ON:

- Assembly process
- Safety vs performance needs
- \cdot Weight restrictions

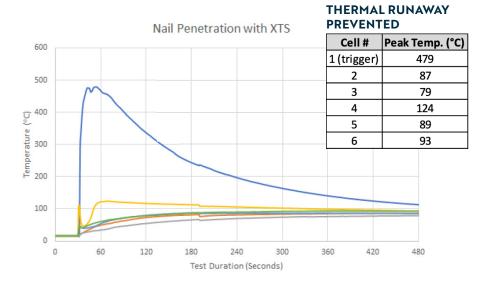

Latent Heat Solutions LLC 831 Pine Ridge Road Golden Colorado 80403 info@lhsmaterials.com lhsmaterials.com P: 303.581.0801


LHS21-012_XTS_PDS © 2023 Latent Heat Solutions LLC. All Rights Reserved. LPDS3300-1374 Revision 4 Effective Date: 7/6/2023

THERMAL RUNAWAY PROTECTION

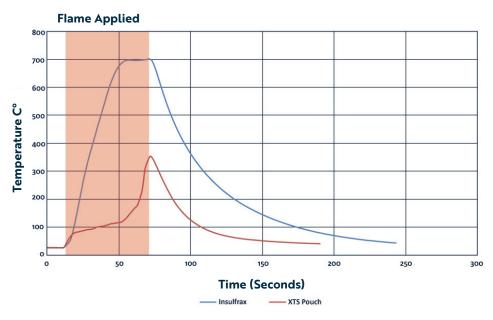
XTS is designed to prevent thermal runaway by:

- Capture and Convert Thermal Energy
 - XTS vaporized into a non-combustiable vapor that absorbs thermal energy
- Quench and Extinguish Flaming
 - Non-combustible vapor limits oxygen availability
- Blocking or Deflecting Ejecta
 - Novel heat deflection/thermal barrier properties can be tailored for specific needs. Its high specific heat capacity provides better thermal balancing during standard operating conditions



PRE-TEST

POST TEST


PRE-TEST

POST TEST

Latent Heat Solutions LLC 831 Pine Ridge Road Golden Colorado 80403 info@lhsmaterials.com lhsmaterials.com P: 303.581.0801

XTS Pouches can out compete traditional insulation materials and provide a more effective flame barrier:

Side exposed to flame

Backside

XTS pouch immediately self-extinguishes upon multiple applications of a propane torch at 1200°C. No flame penetration/damage on reverse side of flame application.

TYPICAL PHYSICAL PROPERTIES				
Density:	0.97-1.00 g/cm ³			
Thermal Conductivity:	0.74 W/mK (xy-plane)			
Specific Heat Capacity:	3.5 J/g/°C			
Phase Transition:	95-110°C			
Thermal Dissipation:	1600-2000 J/g			
Coefficient Thermal Expansion (volumetric):	Pliable; reference 300-400 x 10 ⁻⁶ /K @ 30-70°C			
Bulk Electrical Resistivity:	6 x 10 ¹³ Ω cm			
Shore Hardness:	Pliable			
Laminate Thickness:	115µm +/-5%			
Laminate Strength:	>22.5N/15mm			
ROHS Compliance:	Compliant			

XTS POUCH: ALTERNATIVE FILL OPTIONS

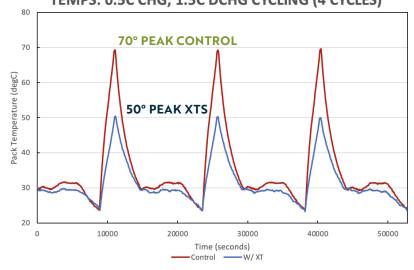
XTS pouches can also be designed with other fill materials to meet specific thermal management needs, specifically using traditional solid-to-liquid based PCMs including Fill & Flow products.

TYPICAL PHYSICAL PROPERTIES			
Density:	0.85-0.97 g/cm ³		
Thermal Conductivity:	0.74-1 W/mK (xy-plane)		
Specific Heat Capacity:	1.85-2.35/g/°C*		
Phase Transition:	35-85°C**		
Thermal Dissipation:	160-200 J/g***		
Thermal Expansion (volumetric):	Pliable; up to 3% volume change @PTT		
Bulk Electrical Resistivity:	6x10 ¹³ Ω cm		
Shore Hardness:	Pliable depending on fill material		
Laminate Thickness:	115µm+/-5%		
Laminate Strength:	>22.5N/15mm		
ROHS Compliance:	Compliant		

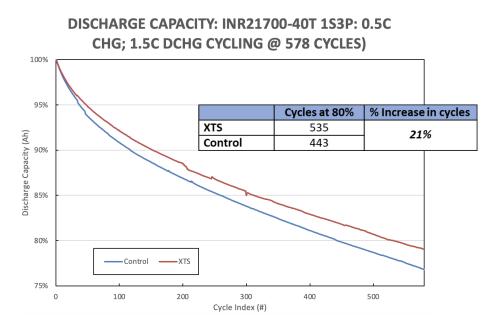
*Reference F&F table below for typical heat capacity ranges **Reference F&F table below for typical PTT ranges ***Reference F&F table below; based on 10% of total mass being pouch material

LHS Product	LHS F&F-89	LHS F&F-90R	LHS F&F-91	LHS F&F-92	LHS F&F-93
Temperature (PPT):	35-39 °C	42-46 °C	49-51 °C	53-57 °C	59-63 °C
Latent Heat:	210-230 kJ/kg	180-200 kJ/kg	200-220 kJ/kg	200-220 kJ/kg	210-230 kJ/kg
Specific Gravity @ 22°C:	0.8	0.8	0.8	0.8	0.8
Viscosity Above PTT (CPS):	25-100	25-100	25-100	25-100	25-100
Operating Temp. Range:	-10-120°C	-10-120°C	-10-120°C	-10-120°C	-10-120°C
Volume Resistivity:	l.l x10 ¹⁵ Ωcm	4.3 x10 ¹³ Ωcm	4.5 x10 ¹³ Ωcm	4.5 x10 ¹³ Ωcm	4.5 x10 ¹³ Ωcm
Dielectric Constant:	2.04	3.05	3.05	3.05	3.05
Dielectric Strength**:	21.71 MV/m	36.63 MV/m	35.63 MV/m	35.63 MV/m	35.63 MV/m
RoHS Compliance:	Compliant	Compliant	Compliant	Compliant	Compliant
Avg. Specific Heat Capacity, Cp-Below PTT*	1.85 J∕g •°C	1.90 J/g •°C	1.90 J∕g •°C	1.90 J∕g •°C	1.90 J/g •°C
Avg. Specific Heat Capacity, Cp-Above PTT*	2.35 J/g ⋅°C	2.45 J/g ∙°C	2.45 J/g ∙°C	2.45 J/g ∙°C	2.45 J/g •°C
Avg. Thermal Conductivity, - Below PTT*	0.35 W/m•k				
Avg. Thermal Conductivity, - Above PTT*	0.25 W/m•k				

*viscosity determined at 20°C above the transition temperature *Other phase transition temperatures up to 130°C are available


*Similar to most solid and liquid materials, the specific heat capacity and thermal conductivity have insignificant change above and below the transition temperature. **Tested at 3 mm thickness

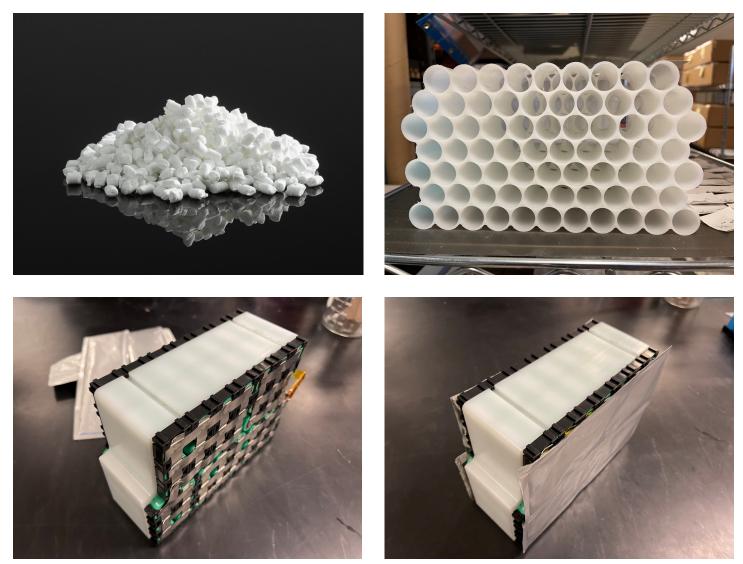
XTS THERMAL MANAGEMENT


XTS pouches provide a passive thermal solution to challenges observed in many battery applications where heat generation during standard operation can have lasting damage to the battery.

XTS specifically addresses this through:

- Tailorable heat absorbing materials using either the XTS gel or other PCM-based fill materials
- Achieving maximum heat absorption at the lowest possible weight due to configurable pouch design
- Higher overall effective thermal conductivity compared to traditional passive solutions

INR21700-40T 1S3P: AVERAGE CELL SURFACE TEMPS: 0.5C CHG; 1.5C DCHG CYCLING (4 CYCLES)

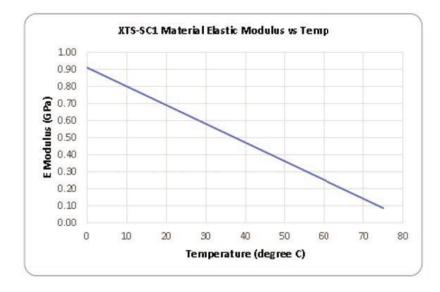


Latent Heat Solutions LLC 831 Pine Ridge Road Golden Colorado 80403 info@lhsmaterials.com lhsmaterials.com P: 303.581.0801

LHS21-012_XTS_PDS
© 2023 Latent Heat Solutions LLC. All Rights Reserved.
LPDS3300-1374 Revision 4 Effective Date: 7/6/2023

XTS SCI & SCI-FR COMPOSITE

- The XTS SCI & SCI-FR products are shape-stable PCM composites designed for use in thermal runaway situations where additional structural support against side wall rupture events in Li-ion cells is needed
- It is designed to be used as an interstitial thermal barrier in tandem with XTS pouches as a complete thermal runaway protection package
- These products behave as typical engineered thermoplastic resins and can be extruded, molded, and/or machined using typical thermoplastic processing equipment and are available as a finished good or as a pellet form, raw material.



XTS SC1 products require XTS pouches for ejecta/venting management during thermal runaway events.

Latent Heat Solutions LLC 831 Pine Ridge Road Golden Colorado 80403 info@lhsmaterials.com lhsmaterials.com P: 303.581.0801

LHS2I-012_XTS_PDS © 2023 Latent Heat Solutions LLC. All Rights Reserved. LPD\$3300-1374 Revision 4 Effective Date: 7/6/2023

TYPICAL PHYSICAL PROPERTIES	XTS-SCI	XTS-SC1-FR	
Density (g/cm3)	0.961	1.08	
TYPICAL THERMAL PROPERTIES			
Specific Heat Capacity(J/g°C)	2.0	2.0	
Heat of Fusion (J/g)	240	170	
Phase Transition (°C)	122	122	
CTE Linear @ 23°C(µm/m°C)	116	111	
Thermal Conductivity (W/m*K)	0.65	0.52	
TYPICAL MECHANICAL PROPERTIES			
Tensile Strength @ Break (Mpa)	31	11.5	
Tensile Strength @ Yield (Mpa)	27	16.4	
Yield Elongation (%)	15	6.3	
Break Elongation (%)	600	34	
Tensile Modulus (Mpa)	1200	1020	
Flexural Modulus (Mpa)	1351	869	
Hardness, Shore D:	65	65	
TYPICAL ELECTRICAL PROPERTIES			
Dielectric Constant	2.45	3.45	
Dielectric Strength (V/mil)	769	719	
Volume Resistivity (Ohm per sq.)	4.00E+15	3.34E+13	
Surface Resistivity (Ohm per sq.)	1E+14	8.87E+13	
FR RATING			
Vertical Burn Test 1.5 mm	N/A	UL94-V0	
Vertical Burn Test 3.0 mm	N/A	UL94-V0	

info@lhsmaterials.com lhsmaterials.com P: 303.581.0801

7